miEAA Command Line Interface and API¶
The miRNA Enrichment Analysis and Annotation Tool (miEAA) facilitates the functional analysis of miRNA sets. This package provides a miEAA REST API wrapper and command line interface. As such, a stable internet connection is required to utilize these tools.
Users can execute miEAA commands directly from the command line:
$ mieaa -h
A REST API is also provided for scripting purposes:
from mieaa import API
mieaa_api = API()
Complete examples for both Python and R (using reticulate) are available under Examples.
Installation¶
Dependencies:
- Python >= 3.5
- Requests >= 2.19
Python Package Index¶
$ pip install mieaa
Conda
¶
$ conda install -c ccb-sb mieaa
API Wrapper¶
mieaa¶
API () |
miEAA api wrapper class. |
API.convert_mirbase (mirnas, Iterable[str], …) |
Convert a set of either miRNAs/precursors from one miRbase version to another |
API.to_precursor (mirnas, Iterable[str], IO], …) |
Convert from mirna->precursor |
API.to_mirna (mirnas, Iterable[str], IO], …) |
Convert from precursor->mirna |
API.get_enrichment_categories (mirna_type, …) |
Get possible enrichment categories |
API.get_enrichment_parameters () |
Retrieve parameters used during enrichment analysis |
API.get_gui_url (page[, job_id]) |
Get specific url to page in web tool |
API.get_progress () |
Retrieve enrichment analysis progress |
API.get_results (results_format, …[, retries]) |
Return results in json or csv format |
API.new_session () |
Start a new session, clearing all job results |
API.open_gui ([page, job_id]) |
Open specific mieaa web tool page in browser |
API.run_gsea (test_set, Iterable[T_co], IO], …) |
Start miRNA Set Enrichment Analysis |
API.run_ora (test_set, Iterable[T_co], IO], …) |
Start Over Enrichment Analysis |
API.save_enrichment_results (save_file, IO], …) |
Save results in specified format |
Examples¶
Python¶
Python API Example¶
A barebones example script can be found on Github.
from mieaa import API
mieaa_api = API()
Target sets, categories, and reference sets support strings, iterables, and file objects.
Mixed delimiters should still function, but are not recommended.
#initial_mirnas = ['hsa-miR-374c', 'hsa-miR-642b', 'hsa-miR-550b', 'hsa-miR-107', 'hsa-miR-125b']
initial_mirnas = 'hsa-miR-374c hsa-miR-642b,hsa-miR-550b;hsa-miR-107;hsa-miR-125b'
Convert between miRBase versions¶
Results can be optionally saved to a file by specifying the to_file
argument.
# mieaa_api.convert_mirbase(initial_precursors, 9.1, 22, 'precursor', to_file='mirnas.txt')
updated_mirnas = mieaa_api.convert_mirbase(initial_mirnas, 16, 22, 'mirna')
updated_mirnas
['hsa-miR-374c-5p',
'hsa-miR-642b-3p',
'hsa-miR-550b-3p',
'hsa-miR-107',
'hsa-miR-125b-5p']
Convert between miRNAs <-> precursors¶
Results can be optionally saved to a file by specifying the to_file
argument.
Some names are not uniquely converted. We can specify conversion type as either all
(default) or unique
.
We can also decide whether we want our output to only include
converted results with multiple-mapped values separated by a semicolon
(default, oneline
), on their own individual lines (newline
), or
a tab separated input - output (tabsep
).
precursors = mieaa_api.to_precursor(updated_mirnas, to_file='./precursors.txt', conversion_type='all')
precursors
['hsa-mir-374c',
'hsa-mir-642b',
'hsa-mir-550b-1;hsa-mir-550b-2',
'hsa-mir-107',
'hsa-mir-125b-1;hsa-mir-125b-2']
with open('./precursors.txt') as prec_file:
mirnas = mieaa_api.to_mirna(prec_file, output_format='tabsep')
mirnas
['hsa-mir-374c\thsa-miR-374c-5p;hsa-miR-374c-3p',
'hsa-mir-642b\thsa-miR-642b-5p;hsa-miR-642b-3p',
'hsa-mir-550b-1\thsa-miR-550b-3p;hsa-miR-550b-2-5p',
'hsa-mir-550b-2\thsa-miR-550b-3p;hsa-miR-550b-2-5p',
'hsa-mir-107\thsa-miR-107',
'hsa-mir-125b-1\thsa-miR-125b-5p;hsa-miR-125b-1-3p',
'hsa-mir-125b-2\thsa-miR-125b-5p;hsa-miR-125b-2-3p']
Enrichment Analysis¶
Starting Enrichment Analysis¶
Run Gene Set Enrichment Analysis (GSEA) or Over-representation Analysis (ORA).
Please refer to documentation for possible keyword arguments.
For ORA, if reference_set
is not specified or is left empty, default
to using miEAA reference sets for specified categories.
# mieaa_api.run_gsea(precursors, ['HMDD, mndr'], 'precursor', 'hsa')
with open('./precursors.txt', 'r') as test_set_file:
mieaa_api.run_ora(test_set_file, ['HMDD, mndr'], 'precursor', 'hsa', reference_set='')
Retrieving Enrichment Results¶
Get results after enrichment analysis has been completed, determining
how often to check progress via check_progress_interval
(default is
5 seconds).
json = mieaa_api.get_results(check_progress_interval=5)
The returned data can be easily turned into a pandas dataframe.
import pandas as pd
cols = ['category', 'subcategory', 'enrichment', 'p-value', 'p-adjusted', 'q-value', 'expected', 'observed', 'mirnas/precursors']
df = pd.DataFrame(json, columns=cols)
df.head()
category | subcategory | enrichment | p-value | p-adjusted | q-value | expected | observed | mirnas/precursors |
---|---|---|---|---|---|---|---|---|
Diseases (HMDD) | Alopecia | over-represented | 0.0017138 | 0.0478121 | 0.0478121 | 0.0678879 | 2 | hsa-mir-125b-1; hsa-mir-125b-2 |
Diseases (HMDD) | Atopic Dermatitis | over-represented | 0.0021345 | 0.0478121 | 0.0478121 | 0.075431 | 2 | hsa-mir-125b-1; hsa-mir-125b-2 |
Diseases (HMDD) | Lichen Planus | over-represented | 0.0017138 | 0.0478121 | 0.0478121 | 0.0678879 | 2 | hsa-mir-125b-1; hsa-mir-125b-2 |
Diseases (HMDD) | Myotonic Muscular Dystrophy | over-represented | 0.00063573 | 0.0356009 | 0.0356009 | 0.196121 | 3 | hsa-mir-107; hsa-mir-125b-1; hsa-mir-125b-2 |
Diseases (HMDD) | Nevus | over-represented | 0.000145941 | 0.0163454 | 0.0163454 | 0.0226293 | 2 | hsa-mir-125b-1; hsa-mir-125b-2 |
Results can also be obtained as a csv string.
csv_string = mieaa_api.get_results('csv')
Saving Enrichment Results¶
Results can be automatically saved to a json or csv (default) file.
# mieaa_api.save_enrichment_results('./example.json', file_type='json')
file_contents = mieaa_api.save_enrichment_results('./results.csv')
Alternatively, we can write the csv results to a file.
with open('results_2.csv', 'w+') as outfile:
outfile.write(csv_string)
Miscellaneous¶
After running an analysis, we may wish to view the parameters we used for our analysis.
mieaa_api.get_enrichment_parameters()
{'enrichment_analysis': 'ORA',
'p_value_adjustment': 'fdr',
'independent_p_adjust': True,
'significance_level': 0.05,
'threshold_level': 2,
'categories': ['HMDD_precursor', 'MNDR_precursor'],
'reference_set': '',
'testset_file': <_io.TextIOWrapper name='./precursors.txt' mode='r' encoding='UTF-8'>}
Upon running an analysis, our API instance is assigned a unique Job ID.
If we wish to reuse the same instance to run a new analysis, we must create a new session.
mieaa_api.new_session()
R¶
R API Example¶
The reticulate library allows us to utilize the wrapper class in R, assuming Python is also installed.
A barebones example script can be found on Github.
library(reticulate)
mieaa = import("mieaa")
mieaa_api = mieaa$API()
Target sets, categories, and reference sets support strings, iterables, and file objects.
Mixed delimiters should still function, but are not recommended.
# list('hsa-miR-374c', 'hsa-miR-642b', 'hsa-miR-550b', 'hsa-miR-107', 'hsa-miR-125b')
initial_mirnas = 'hsa-miR-374c hsa-miR-642b,hsa-miR-550b;hsa-miR-107;hsa-miR-125b'
Convert between miRBase versions¶
Results can be optionally saved to a file by specifying the to_file
argument.
# mieaa_api$convert_mirbase(initial_precursors, '9.1', '22', 'precursor', to_file='mirnas.txt')
updated_mirnas = mieaa_api$convert_mirbase(initial_mirnas, '16', '22', 'mirna')
updated_mirnas
[[1]]
[1] "hsa-miR-374c-5p"
[[2]]
[1] "hsa-miR-642b-3p"
[[3]]
[1] "hsa-miR-550b-3p"
[[4]]
[1] "hsa-miR-107"
[[5]]
[1] "hsa-miR-125b-5p"
Convert between miRNAs <-> precursors¶
Results can be optionally saved to a file by specifying the
to_file
argument.
Some names are not uniquely converted. We can specify conversion type
as either all
(default) or unique
.
We can also decide whether we want our output to only include
converted results with multiple-mapped values separated by a semicolon
(default, oneline
), on their own individual lines (newline
), or
a tab separated input - output (tabsep
).
precursors = mieaa_api$to_precursor(updated_mirnas, to_file='./precursors.txt', conversion_type='all')
precursors
[[1]]
[1] "hsa-mir-374c"
[[2]]
[1] "hsa-mir-642b"
[[3]]
[1] "hsa-mir-550b-1;hsa-mir-550b-2"
[[4]]
[1] "hsa-mir-107"
[[5]]
[1] "hsa-mir-125b-1;hsa-mir-125b-2"
py = import_builtins() # part of 'reticulate'
# Files need to be python file objects
with(py$open("precursors.txt", 'r') %as% prec_file, {
mirnas = mieaa_api$to_mirna(prec_file, output_format='tabsep')
})
mirnas
[[1]]
[1] "hsa-mir-374c\thsa-miR-374c-5p;hsa-miR-374c-3p"
[[2]]
[1] "hsa-mir-642b\thsa-miR-642b-5p;hsa-miR-642b-3p"
[[3]]
[1] "hsa-mir-550b-1\thsa-miR-550b-3p;hsa-miR-550b-2-5p"
[[4]]
[1] "hsa-mir-550b-2\thsa-miR-550b-3p;hsa-miR-550b-2-5p"
[[5]]
[1] "hsa-mir-107\thsa-miR-107"
[[6]]
[1] "hsa-mir-125b-1\thsa-miR-125b-5p;hsa-miR-125b-1-3p"
[[7]]
[1] "hsa-mir-125b-2\thsa-miR-125b-5p;hsa-miR-125b-2-3p"
Enrichment Analysis¶
Starting Enrichment Analysis¶
Run Gene Set Enrichment Analysis (GSEA) or Over-representation Analysis (ORA).
Please refer to documentation for possible keyword arguments.
For ORA, if reference_set
is not specified or is left empty, default
to using miEAA reference sets for specified categories.
# mieaa_api$run_gsea(precursors, ['HMDD, mndr'], 'precursor', 'hsa')
with(py$open("precursors.txt", 'r') %as% test_set_file, {
mieaa_api$run_ora(test_set_file, list('HMDD, mndr'), 'precursor', 'hsa', reference_set='')
})
Retrieving Enrichment Results¶
Get results after enrichment analysis has been completed, determining
how often to check progress via check_progress_interval
(default is
5 seconds).
json = mieaa_api$get_results(check_progress_interval=5)
The returned data can be easily turned into a dataframe.
cols = c('category', 'subcategory', 'enrichment', 'p-value', 'p-adjusted', 'q-value', 'expected', 'observed', 'mirnas/precursors')
df = data.frame(matrix(unlist(json), nrow=length(json), byrow=T))
colnames(df) = cols
head(df)
category | subcategory | enrichment | p-value | p-adjusted | q-value | expected | observed | mirnas/precursors |
---|---|---|---|---|---|---|---|---|
Diseases (HMDD) | Alopecia | over-represented | 0.0017138 | 0.0478121 | 0.0478121 | 0.0678879 | 2 | hsa-mir-125b-1; hsa-mir-125b-2 |
Diseases (HMDD) | Atopic Dermatitis | over-represented | 0.0021345 | 0.0478121 | 0.0478121 | 0.075431 | 2 | hsa-mir-125b-1; hsa-mir-125b-2 |
Diseases (HMDD) | Lichen Planus | over-represented | 0.0017138 | 0.0478121 | 0.0478121 | 0.0678879 | 2 | hsa-mir-125b-1; hsa-mir-125b-2 |
Diseases (HMDD) | Myotonic Muscular Dystrophy | over-represented | 0.00063573 | 0.0356009 | 0.0356009 | 0.196121 | 3 | hsa-mir-107; hsa-mir-125b-1; hsa-mir-125b-2 |
Diseases (HMDD) | Nevus | over-represented | 0.000145941 | 0.0163454 | 0.0163454 | 0.0226293 | 2 | hsa-mir-125b-1; hsa-mir-125b-2 |
Results can also be obtained as a csv string.
csv_string = mieaa_api$get_results('csv')
Saving Enrichment Results¶
Results can be automatically saved to a json or csv (default) file.
# mieaa_api$save_enrichment_results('./example.json', file_type='json')
file_contents = mieaa_api$save_enrichment_results('./results.csv')
Alternatively, we can write the csv results to a file.
outfile = file("./results_2.csv")
writeLines(csv_string, outfile)
close(outfile)
Miscellaneous¶
After running an analysis, we may wish to view the parameters we used for our analysis.
mieaa_api$get_enrichment_parameters()
$enrichment_analysis
[1] "ORA"
$p_value_adjustment
[1] "fdr"
$independent_p_adjust
[1] TRUE
$significance_level
[1] 0.05
$threshold_level
[1] 2
$categories
[1] "HMDD_precursor" "MNDR_precursor"
$reference_set
[1] ""
$testset_file
<_io.TextIOWrapper name='precursors.txt' mode='r' encoding='UTF-8'>
Upon running an analysis, our API instance is assigned a unique Job ID.
If we wish to reuse the same instance to run a new analysis, we must create a new session.
mieaa_api$new_session()
Command Line Interface¶
Commands can be invoked via the command line using mieaa SUBCOMMAND
.Help and options for all subcommands can be view with mieaa SUBCOMMAND -h
Supported Species
- hsa - Homo sapiens
- mmu - Mus musculus
- rno - Rattus norvegicus
- ath - Arabidopsis thaliana
- bta - Bos taurus
- cel - Caenorhabditis elegans
- dme - Drosophila melanogaster
- dre - Danio rerio
- gga - Gallus gallus
- ssc - Sus scrofa
Specifying precursorsFor subcommands where you need to specify precursor or mature, mature is always assumed unless the --precursor
(-p
) flag is set.
Mutually exclusive optionsMost subcommands require one of --mirna-set
(-m
) or --mirna-set-file
(-M
) to be specified.
mieaa SUBCOMMAND --mirna-set MIRNA [MIRNA ...]
mieaa SUBCOMMAND --mirna-set MIRNAS_STRING
mieaa SUBCOMMAND --mirna-set-file MIRNA_FILE
Subcommands¶
to_precursor¶
Convert miRNA -> precursor
usage: miEAA to_precursor [-h] [-v] [-m MIRNA_SET [MIRNA_SET ...]]
[-M MIRNA_SET_FILE] [-p] [-o OUTFILE]
[--oneline | --newline | --tabsep] [-u]
optional arguments:
-h, --help show this help message and exit
-v, --verbose Always print results to stdout
-p, --precursor, --precursors
Use if running on a set of precursors as opposed to
miRNAs
-o OUTFILE, --outfile OUTFILE
Save results to provided file
--oneline Output style: Multi-mapped ids are separated by a
semicolon (default)
--newline Output style: Multi-mapped ids are separated by a
newline
--tabsep Output style: Tab-separated `original converted` ids
-u, --unique Only output ids that map uniquely
mutually exclusive required arguments:
either a set or file must be provided
-m MIRNA_SET [MIRNA_SET ...], --mirna-set MIRNA_SET [MIRNA_SET ...]
miRNA/precursor target set
-M MIRNA_SET_FILE, --mirna-set-file MIRNA_SET_FILE
Specify miRNA/precursor target set via file
Examples:
$ mieaa to_precursor -m hsa-miR-20b-5p hsa-miR-144-5p --tabsep --unique
$ mieaa to_precursor -m 'hsa-miR-20b-5p,hsa-miR-144-5p' --newline -o precursors.txt
$ mieaa to_precursor -M mirnas.txt --outfile precursors.txt
to_mirna¶
Converting between precursor -> miRNA
usage: miEAA to_mirna [-h] [-v] [-m MIRNA_SET [MIRNA_SET ...]]
[-M MIRNA_SET_FILE] [-p] [-o OUTFILE]
[--oneline | --newline | --tabsep] [-u]
optional arguments:
-h, --help show this help message and exit
-v, --verbose Always print results to stdout
-p, --precursor, --precursors
Use if running on a set of precursors as opposed to
miRNAs
-o OUTFILE, --outfile OUTFILE
Save results to provided file
--oneline Output style: Multi-mapped ids are separated by a
semicolon (default)
--newline Output style: Multi-mapped ids are separated by a
newline
--tabsep Output style: Tab-separated `original converted` ids
-u, --unique Only output ids that map uniquely
mutually exclusive required arguments:
either a set or file must be provided
-m MIRNA_SET [MIRNA_SET ...], --mirna-set MIRNA_SET [MIRNA_SET ...]
miRNA/precursor target set
-M MIRNA_SET_FILE, --mirna-set-file MIRNA_SET_FILE
Specify miRNA/precursor target set via file
Examples:
$ mieaa to_mirna -m hsa-mir-20b hsa-mir-144 --tabsep --unique
$ mieaa to_mirna -m 'hsa-mir-20b,hsa-mir-144' --newline -o mirnas.txt
$ mieaa to_mirna -M precursors.txt --outfile mirnas.txt
convert_mirbase¶
Converting miRBase version
usage: miEAA convert_mirbase [-h] [-v] [-m MIRNA_SET [MIRNA_SET ...]]
[-M MIRNA_SET_FILE] [-p] [-o OUTFILE]
[--oneline | --newline | --tabsep] [--to TO]
FROM
positional arguments:
FROM mirBase version to convert miRNAs/precursors from
optional arguments:
-h, --help show this help message and exit
-v, --verbose Always print results to stdout
-p, --precursor, --precursors
Use if running on a set of precursors as opposed to
miRNAs
-o OUTFILE, --outfile OUTFILE
Save results to provided file
--oneline Output style: Multi-mapped ids are separated by a
semicolon (default)
--newline Output style: Multi-mapped ids are separated by a
newline
--tabsep Output style: Tab-separated `original converted` ids
--to TO mirBase version to convert miRNAs/precursors from
(default=22)
mutually exclusive required arguments:
either a set or file must be provided
-m MIRNA_SET [MIRNA_SET ...], --mirna-set MIRNA_SET [MIRNA_SET ...]
miRNA/precursor target set
-M MIRNA_SET_FILE, --mirna-set-file MIRNA_SET_FILE
Specify miRNA/precursor target set via file
Examples:
$ mieaa convert_mirbase 16 -m hsa-miR-642b,hsa-miR-550b
$ mieaa convert_mirbase 16 --to 22 -m hsa-miR-642b hsa-miR-550b
$ mieaa convert_mirbase 16 -M version_16.txt -o version_22.txt
gsea¶
Gene Set Enrichment Analysis (GSEA)
usage: miEAA gsea [-h] [-v] [-m MIRNA_SET [MIRNA_SET ...]] [-M MIRNA_SET_FILE]
[-p] [-o OUTFILE] [-x] [-c CATEGORIES [CATEGORIES ...]]
[-C CATEGORIES_FILE] [-t THRESHOLD] [-s SIGNIFICANCE] [-g]
[-a {none,fdr,bonferroni,BY,holm,hochberg,hommel}]
[--csv | --json]
{hsa,mmu,rno,ath,bta,cel,dme,dre,gga,ssc}
positional arguments:
{hsa,mmu,rno,ath,bta,cel,dme,dre,gga,ssc}
Species
optional arguments:
-h, --help show this help message and exit
-v, --verbose Always print results to stdout
-p, --precursor, --precursors
Use if running on a set of precursors as opposed to
miRNAs
-o OUTFILE, --outfile OUTFILE
Save results to provided file
-x, --no-results Do not monitor progress or obtain results. Can
retrieve later using Job ID.
-t THRESHOLD, --threshold THRESHOLD
Filter out subcategories that contain less than this
many miRNAs/precursors (default=2)
-s SIGNIFICANCE, --significance SIGNIFICANCE, --alpha SIGNIFICANCE
Significance level (default=0.05)
-g, --group-adjust Adjust p-values over aggregated groups (By default
each group is adjusted independently)
-a {none,fdr,bonferroni,BY,holm,hochberg,hommel}, --adjustment {none,fdr,bonferroni,BY,holm,hochberg,hommel}
p-value adjustment method (default='fdr')
--csv Store results in output file in csv format (default)
--json Store results in output file in json format (default
is csv)
mutually exclusive required arguments:
either a set or file must be provided
-m MIRNA_SET [MIRNA_SET ...], --mirna-set MIRNA_SET [MIRNA_SET ...]
miRNA/precursor target set
-M MIRNA_SET_FILE, --mirna-set-file MIRNA_SET_FILE
Specify miRNA/precursor target set via file
mutually exclusive optional arguments:
either a set or file may be provided
-c CATEGORIES [CATEGORIES ...], --categories CATEGORIES [CATEGORIES ...]
Set of categories to include in analysis, can include
`all`, `default`, `expert` or specific categories
-C CATEGORIES_FILE, --categories-file CATEGORIES_FILE
File specifying categories to include in analysis
Examples:
$ mieaa gsea hsa --precursors -M precursors.txt -C categories.txt -o results.csv
$ mieaa gsea hsa -p -M precursors.txt -c HMDD MNDR > results.csv
$ mieaa gsea mmu -M mirnas.txt -C categories.txt --adjustment none
$ mieaa gsea rno -M mirnas.txt -C categories.txt -a bonferroni --json -o results.json
ora¶
Over-representation Analysis (ORA)
usage: miEAA ora [-h] [-v] [-m MIRNA_SET [MIRNA_SET ...]] [-M MIRNA_SET_FILE]
[-p] [-o OUTFILE] [-x] [-c CATEGORIES [CATEGORIES ...]]
[-C CATEGORIES_FILE] [-t THRESHOLD] [-s SIGNIFICANCE] [-g]
[-a {none,fdr,bonferroni,BY,holm,hochberg,hommel}]
[--csv | --json] [-r REFERENCE_SET [REFERENCE_SET ...]]
[-R REFERENCE_SET_FILE]
{hsa,mmu,rno,ath,bta,cel,dme,dre,gga,ssc}
positional arguments:
{hsa,mmu,rno,ath,bta,cel,dme,dre,gga,ssc}
Species
optional arguments:
-h, --help show this help message and exit
-v, --verbose Always print results to stdout
-p, --precursor, --precursors
Use if running on a set of precursors as opposed to
miRNAs
-o OUTFILE, --outfile OUTFILE
Save results to provided file
-x, --no-results Do not monitor progress or obtain results. Can
retrieve later using Job ID.
-t THRESHOLD, --threshold THRESHOLD
Filter out subcategories that contain less than this
many miRNAs/precursors (default=2)
-s SIGNIFICANCE, --significance SIGNIFICANCE, --alpha SIGNIFICANCE
Significance level (default=0.05)
-g, --group-adjust Adjust p-values over aggregated groups (By default
each group is adjusted independently)
-a {none,fdr,bonferroni,BY,holm,hochberg,hommel}, --adjustment {none,fdr,bonferroni,BY,holm,hochberg,hommel}
p-value adjustment method (default='fdr')
--csv Store results in output file in csv format (default)
--json Store results in output file in json format (default
is csv)
mutually exclusive required arguments:
either a set or file must be provided
-m MIRNA_SET [MIRNA_SET ...], --mirna-set MIRNA_SET [MIRNA_SET ...]
miRNA/precursor target set
-M MIRNA_SET_FILE, --mirna-set-file MIRNA_SET_FILE
Specify miRNA/precursor target set via file
mutually exclusive optional arguments:
either a set or file may be provided
-c CATEGORIES [CATEGORIES ...], --categories CATEGORIES [CATEGORIES ...]
Set of categories to include in analysis, can include
`all`, `default`, `expert` or specific categories
-C CATEGORIES_FILE, --categories-file CATEGORIES_FILE
File specifying categories to include in analysis
mutually exclusive optional arguments:
either a set or file may be provided
-r REFERENCE_SET [REFERENCE_SET ...], --reference-set REFERENCE_SET [REFERENCE_SET ...]
(Optional) Set of background miRNAs/precursors
-R REFERENCE_SET_FILE, --reference-set-file REFERENCE_SET_FILE
(Optional) File specifying background
miRNAs/precursors
Examples:
$ mieaa ora hsa --precursors -M precursors.txt -C categories.txt > results.csv
$ mieaa ora hsa -p -M precursors.txt -c HMDD MNDR -o results.csv
$ mieaa ora hsa -p -M precursors.txt -C categories.txt -R reference.txt
$ mieaa ora mmu -M mirnas.txt -C categories.txt --adjustment none
$ mieaa ora rno -M mirnas.txt -C categories.txt -a bonferroni --json -o results.json
open¶
Open the specified mieaa web tool page in browser
usage: miEAA open [-h] [-v] [-j JOB_ID] {input,progress,results}
positional arguments:
{input,progress,results}
Open MiEAA interface in browser
optional arguments:
-h, --help show this help message and exit
-v, --verbose Always print results to stdout
-j JOB_ID, --jobid JOB_ID
Job ID
Examples:
$ mieaa open input
$ mieaa open progress -j 31b41542-7856-40be-91b2-fd6afe28fa0b
$ mieaa open results --jobid 31b41542-7856-40be-91b2-fd6afe28fa0b
Links¶
License¶
MIT License
Copyright (c) 2020 Jeffrey Solomon
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.